Model explainability and Model Diagnosis

Srimugunthan Data science-Lead

Brief about me ..

- My name is **Srimugunthan**
- Data Science & Analytics-Tech Lead @ Wells
 Fargo
- Area of interest/Expertise: Prediction models,
 Recommender systems, Reinforcement learning
 Experimentation and causal inference

Outline

Part1: Model explainability techniques

Understand different explainability techniques and how they compare against each other

Part2: Demo, Model understanding using explainability

Using explainability to understand model behavior

Part3: Model diagnosis and debugging

Use explainability techniques to debug a model

Part-1: Model explainability techniques

Why is Model explainability important

• Trust and Transparency: Understand black box models. Model based Decisions need to be transparent

• Ethical considerations

Bias and Fairness: In applications where fairness and avoiding discrimination are critical, understanding the model can help identify and mitigate biases.

• Regulatory Compliance:

- EU's General Data Protection Regulation (GDPR) requires a "right to explanation,"
- Banking institutions require to follow <u>SR 11-</u> <u>7</u> regulation
- Mitigating Model Risks :
 - Manage AI incidents and Needs AI incident response
- Stakeholder Communication
- Model Debugging and ensuring model quality

Model explainability techniques mind map

Partial dependence plot

Partial dependence plot: plot the average model outcome in terms of different values of the predictor

C+o	n	0
Ste	\mathbf{p}	υ

Step 0				_
X1	X2	Х3	Y	
a1	b1	c1	Y1	
a2	b2	c2	Y2	
a3	b3	c3	Y3	

	Step 1									
	X1	X2	Х3	Y	Mean					
1	a1	b1	c1	Y11						
-	a1	b2	c2	Y12	Y (a1)					
	a1	b3	c3	Y13						
$\langle f \rangle$	a2	b1	c1	Y21						
1	a2	b2	c2	Y22	Y (a2)					
, L	a2	b3	c3	Y23						
λſ.	a3	b1	c1	Y31						
×	a3	b2	c2	Y32	Y (a3)					
	a3	b3	c3	Y33						
	Step 2		Ļ							
	X1	a1	a2	a3						
	Y	Y (a1)	Y (a2)	Y (a3)						
Step 3 50 - 45 - 40 - 45 - 40 - 40 - 45 - 40 - 40										
	-0.05 0.00 0.05 0.10 0.15 0.20									

ALGORITHM

1.Select the Feature of Interest: Choose the feature for which you want to estimate the partial dependence. **2.Define the Range:** Determine the range of values for the selected feature that you want to explore. **3.Generate Random Samples:** Instead of creating a fixed grid of values, generate random samples from the selected feature's range.

4. Make Predictions: For each randomly sampled value, set the selected feature to that value while keeping all other features constant. Then, make predictions using your model.

5.Calculate Average Predictions: Calculate the average prediction across all the random samples for each value of the selected feature.

6.Plot the Results: Plot the selected feature values on the x-axis and the corresponding average predictions on the y-axis to create the Monte Carlo estimate of the Partial **Dependence Plot.**

Code from scratch: <u>https://github.com/h2oai/mli-resources/blob/master/notebooks/pdp_ice.ipynb</u> https://medium.com/dataman-in-ai/how-is-the-partial-dependent-plot-computed-8d2001a0e556

X1

ICE plot

- Individual conditional expectation plot: plots model outcome for each random sample of predictor
- While a PDP visualizes the averaged relationship between features and predicted responses, a set of ICE plots disaggregates the averaged information and visualizes an individual dependence for each observation

ALGORITHM

ICE Plot:

- Individual Instances: For each instance in your dataset, fix the values of all features except the one of interest.
- Vary Feature of Interest: Change the value of the feature of interest for that specific instance while keeping the other features constant.
- **Make Predictions:** For each value of the feature of interest, make predictions using the model for that specific instance.
- **Plot the Results:** Plot the predictions against the varying values of the feature of interest for that specific instance.

Code from scratch: <u>https://github.com/h2oai/mli-resources/blob/master/notebooks/pdp_ice.ipynb</u>

SHAP values

ALGORITHM

The algorithm: Approximate Shapley estimation for single feature value

Output: Shapley value for the value of the j-th feature

Required: Number of iterations M, instance of interest x, feature index j, data matrix X, and machine learning model f

For all $m = 1, \ldots, M$:

- Draw random instance z from the data matrix X
- Pick a random subset of feature column indices o (with j not in o).
- Construct two new instances
 - With j from x: x_{+j} , where all values in x with index in o are replaced by the respective values in z.
 - Without j from $x: x_{-j}$, where all values in x with index in o are replaced by the respective values in z and also the value for j is replaced by the value in z.

• Compute marginal contribution: $\phi_j^m = \hat{f}(x_{+j}) - \hat{f}(x_{-j})$

Compute Shapley value as the average: $\phi_j(x) = rac{1}{M} \sum_{m=1}^M \phi_j^m$

Code-from-scratch : <u>https://www.depends-on-the-definition.com/shapley-values-from-scratch/</u> https://towardsdatascience.com/understand-the-working-of-shap-based-on-shapley-values-used-in-xai-in-the-most-simple-way-d61e4947aa4e

Counterfactuals

Definition: A counterfactual is a datapoint close to a given data point, such that the model predicts it to be in a different class

1. INPUT:

ALGORITHM

- The data point or the instance.
- The features of interest that you want to perturbate.
- Additional Constraints

2. Define the Distance Metric:

• Choose a distance metric to quantify the dissimilarity between instances. (Eg: Euclidean distance, Manhattan distance, or a custom distance function).

3. Optimization Solver :

- Formulate an optimization problem to find a new instance that is close to the original but results in a different prediction.
- Define an objective function that balances the proximity of the counterfactual to the original instance and the change in the model's prediction, subject to the constraints
- Use an optimization solver (e.g., gradient-based or evolutionary algorithms) to find the values of the features that minimize the objective function while satisfying the defined constraints.

4. Output the Counterfactual Explanation:

• Present the counterfactual instance if it results in a different prediction and highlight the changed features as an explanation for the model's decision.

Implementation from scratch:

https://www.kaggle.com/code/kyosukemorita/re-focus-counterfactual-explanations-for-trees

Global Surrogate model explanation

ALGORITHM

STEP1: Choose a dataset This could be the same dataset that was used for training the black box model or a new dataset from the same distribution.

STEP2: For the chosen dataset, get the predictions of your base black box model.

STEP3: Choose an interpretable surrogate model (linear model, decision tree, ...).

STEP4: Train the interpretable model on the dataset and its predictions. This is the surrogate model.

STEP5: Interpret / visualize the surrogate model.

Local surrogate model explanation

ALGORITHM

- 1. Choose your instance of interest for which you want to have an explanation of the predictions of your black box model.
- 2. Perturb your dataset and get the black box predictions for these new points.
- 3. Weight the new samples by their proximity to the instance of interest.
- 4. Fit a weighted, interpretable (surrogate) model on the dataset with the variations.
- 5. Explain prediction by interpreting the local model.

Algo toy-implementation: <u>https://fat-forensics.org/how_to/transparency/tabular-surrogates.html</u> <u>https://www.kdnuggets.com/2018/12/explainable-ai-model-interpretation-strategies.html/2</u>

Techniques Compared

	PDP/ICE	SHAP	Counterfactu al	Local surrogate	Surrogate
Type of explainability	PDP: Global ICE: Local	Global as well as local	Local	Local	Global
Cons	Correlated features create invalid points in plot	Sensitive to order of input Can be adversarially manipulated to hide bias Computationally complex	Rashomon effect: Multiple contradictory explanations	Explanations can be unstable. Can be adversarially manipulated to hide bias	fail for non-linear relationships and high-dimensional interactions among features.
When to use	Helps diagnose monotonicity	Lends to great visualizations	Useful in misprediction analysis	Lime works for tabular data, text and images	When you need a simpler understandable proxy model

Part-2: Demo, Model explainability for model understanding

Demo: Model explainability

- Titanic Notebook(Local surrogate, Lime): https://github.com/srimugunthan/Modelexplainability-session/blob/main/4_Lime/LIME-Titanic.ipynb
- Titanic Notebook(Counterfactuals DiCe): <u>https://github.com/srimugunthan/Modelexplainability-</u> <u>session/blob/main/5_DiCe/DiceOnTitanic.ipynb</u>
- **Titanic Notebook (PDP/ICE) :** <u>https://github.com/srimugunthan/Modelexplainability-session/blob/main/1_PDP_ICE/PDP-ICE-titanic.ipynb</u>
- **Titanic Notebook (SHAP) :** <u>https://github.com/srimugunthan/Modelexplainability-</u> session/blob/main/2_SHAP/SHAP-titanic.ipynb
- Housing Prices (Surrogate tree model) : <u>https://github.com/h2oai/mli-resources/blob/master/notebooks/dt_surrogate.ipynb</u>

Part-3: Model diagnosis and debugging

Common AI/ML model Bugs

1	IDEPENDENT MODEL LEVEL		PRODUCTION DEPLOYMENT AND INTEGRATION LEVEL	PRODUCT LEVEL			
SOME COMMON ISSUES IN ML MODE Data leakage Biased training data	EL DESCRIPTION Wrong methodology of cross validation, including features with target leakage Training data preparation error	•	Data loss at source, missing data errors Broken upstream models	408 $2285 579_{348} 576 577 351 577 357 357 3577 357$			
	Data augmentation errors, Intentional data poisoning	•	 Changes in Table update cadence Mismatch in feature 	86 143 1300 270 511 572 591 362 362 5142 206 286 143 1800 270 511 572 591 362 532 258 594 300 363 143 186 18 18 510 512			
Feature interactions	Correllated features, proxy features, Non-additive effect from multiple features						
Source Data errors not handled	Data errors not handled Missing values, outliers, sparse data Incomplete data due to non-availability Duplicate data rows		engineering during training and production	215 607 216 327 529 274 19 197 214 326 119 129 332 12 167 19 197 214 B8 471 1263 4 B8 471 1263 4 500 4 140 371 210 276 288 80 100 97740 19 228 140 371 210 276 288 180 100 97740 19 145 228 140 371 210 276 288 180 100 97740 19 145 228			
Wrong Feature engineering	Disparate feature scales. Information loss on certain features	•	Drift issues	997 ⁷⁹ 3 491 Facebook Gave Vulgar English Translation of 121 23 492 24 493 24 244 543682 20 10560 1,323 427 221 3 322550 121 3 322550 121 3 322550 121 3 322 323 128 128 128 128 128 128 128 128			
Overfitting, Underfitting, bias-variance isssues	Errors in Hyper parameter and Model selection, Feature selection high cardinality of certain categorical features		 Concept drift Data drift Model 	Chinese President's Name 600 0034 288 Unclassified 13 304 253 304 69 313 2553 625 447 3e9 444 Mismatch 25 69 69 576 399 266 3e9 446 Unclassified 15 15			
Error in target variable distribution	Imbalance in target. Target distribution not representing reality		degradation	562388 416 ⁵ 7 30-9 441 533 37- 37-			
Model instability	Model results do not have reproducibility	•	Auversariai attacks	https://incidentdatabase.ai/summaries/spat			
Distribution shift	Dataset selection issues, using very old data etc			ial/			
Bias , Fairness issues	Underperformance in segment, data sparsity in certain regions						

"Machine learning for High risk applications" <u>https://www.oreilly.com/library/view/machine-learning-for/9781098102425/</u>

Example : Diagnosing and Debugging biased ML model

Credit card Example (from "Machine learning from High-risk applications" book):

• <u>https://github.com/ml-for-high-risk-apps-book/Machine-Learning-for-High-Risk-Applications-Book/blob/main/code/Chapter-10/Testing and Remediating Bias constrained.ipynb</u>

Diagnosing Bias		Prevalence	Accuracy	True Positive Rate	Precision	Specificity	Negative Predicted Value	False Positive Rate	False Discovery Rate	False Negative Rate	False Omissions Rate
	hispanic	0.399393	0.732053	0.564557	0.705696	0.843434	0.744428	0.156566	0.294304	0.435443	0.255572
Metrics by	black	0.386707	0.719033	0.544271	0.667732	0.829228	0.742647	0.170772	0.332268	0.455729	0.257353
segment	white	0.107075	0.817718	0.565476	0.308442	0.847966	0.942109	0.152034	0.691558	0.434524	0.057891
Segment	asian	0.101010	0.832323	0.620000	0.326316	0.856180	0.952500	0.143820	0.673684	0.380000	0.047500

Debugging Bias

- Hunt for proxy features encoding race by building an adversarial model that predicts the race
- Identify problematic feature from SHAP plot

Fixing Bias, Ways of Remediation

- Re-sampling training data(during pre-processing)
- Do regularisation, training a weighted model, a customized objective function or Select model for performance as well as fairness measure (during modelling phase)
- Modify prediction scores (during postprocessing)

Books

Interpretable Machine Learning A Guide for Making Black Box Models Interpretable

O'REILLY'

Explainable Al for Practitioners Designing and Implementing Explainable ML Solutions

O'REILLY'

Machine Learning for High-Risk Applications Approaches to Responsible AI

LinkedIn connect

https://www.lin kedin.com/in/sri mugunthandhandapani/