AI and Analytics: Opportunities Landscape

- Srimugunthan Dhandapani

Data scientist – Technical Lead

Outline

Al and analytics – Introduction

Advent of Big data analytics

DRIVERS OF DATA GROWTH

- Digital transformation of businesses
- Proliferation of devices
- Logarithmic drop of storage costs

EXPLOSION OF DATA

- Data collected mobiles, sensors, and IoT devices
- Data generated in enterprise-hardened servers
- Applications embed data collection as part

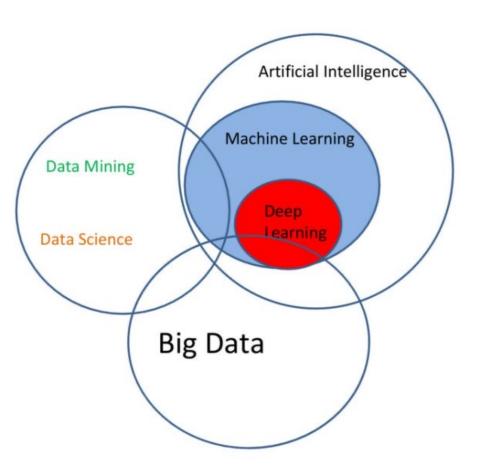
BIG DATA TIMELINE

1997: Google launches search engine

1999: "Big data" term used first

2005: "Hadoop" paper

2010: Spark paper

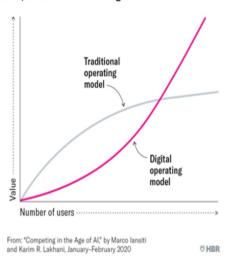

2012 : Role and JD for data scientist became popular

2015-2018: Bigdata on the cloud

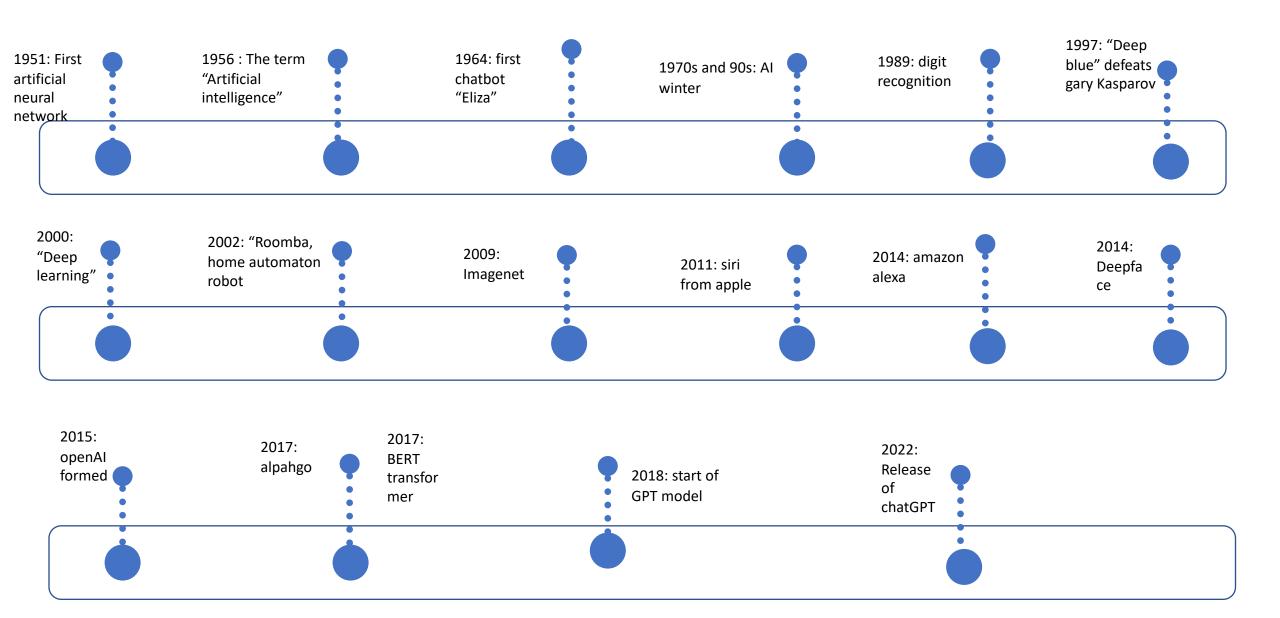
IDC says 175 ZB will be created by 2025 (Image courtesy IDC)

AI, Machine learning and Big data analytics

Artificial intelligence: technology that mimics human intelligence

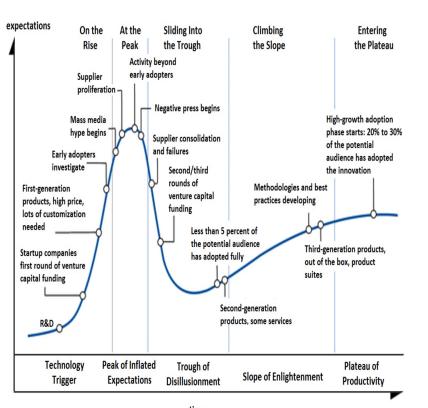

- visual perception
- speech recognition
- natural language understanding.
- automated decisionmaking

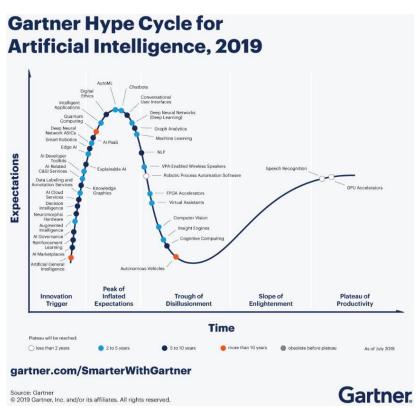
Al techniques include machine learning, deep learning, natural language processing, computer vision, and robotics.

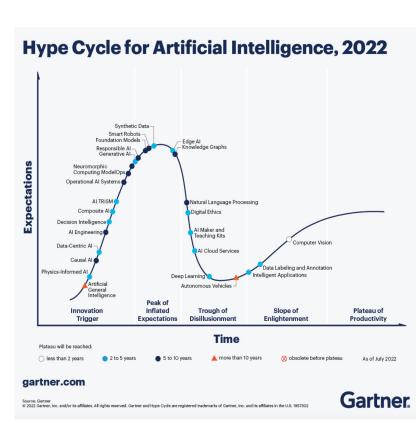

Big data is the fuel on which artificial intelligence runs

How Al-Driven Companies Can Outstrip Traditional Firms

The value that scale delivers eventually tapers off in traditional operating models, but in digital operating models, it can climb much higher.




AI machine learning - Timeline



AI trends

AI Trends: Gartner hype cycle for AI

- relies on the technique of neural networks usually with many layers
- Neural nets can model any function
- With increasing data, the performance keeps increasing, uncovers complex patterns
- Many applications : robotics,Cybersecurity, Smart agriculture

O PyTorch

- Significant progress in Computer vision problems: object detection, tracking, face recognition, image segmentation etc
- Many applications: agri-tech, autonomous cars, contactless retail etc

- Significant progress in generating next best response
- Improvements needed in terms of contextual awareness, multilingual, nuances in human language
- Applications in customer service, teaching, marketing

- lower-quality substitute and used when real data is inconvenient
- banks and financial services institutions use synthetic data by setting up multiagent simulations to explore market behaviours

- process of attributing, tagging, or labeling data to help machine learning algorithms understand and classify the information
- -image, text and audio annotation
- Semi supervised learning, unsupervised learning

Generative AI and LLMs

- A broad label description of AI that uses unsupervised learning algorithms to create images, video, audio, text or code
- LLM, or Language Model with Latent Variables, is a type of probabilistic model used in Natural Language Processing (NLP) that extends traditional language models by incorporating hidden, or latent, variables into the model.
- many applications in a variety of fields.
 In the entertainment industry, gaming industry, healthcare industry, marketing etc

- KG is a kind of semantic network with added constraints
- encode human knowledge leveraging a graph-based structure
- machine learning models will have better explainability and trustworthiness.
- Applications: Finance domain for fraud detection, social media, new product analytics

- learning about their environment and experience.
- better customer experience for doing repetitive tasks
- Applications: Home assistant robots,
- Service robots in hospitality, restaurants etc

- Al is good at predicting "when X then Y". However causal ML tries to understand why
- Some of the key challenges in causal machine learning include dealing with selection bias, identifying appropriate causal assumptions, and handling complex causal structures.
- Causal machine learning algorithms typically use observational or experimental data to infer causal relationships between variables

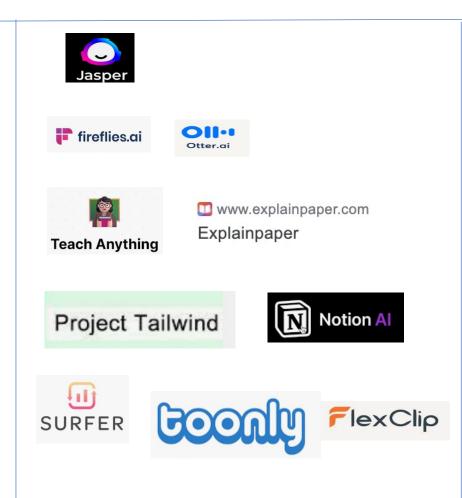
- Al trust, risk and security management (Al TRiSM) ensures Al model governance, trustworthiness, fairness, reliability, robustness, efficacy and data protection. This includes solutions and techniques for model interpretability and explainability
- Manage AI risk are much more likely to experience negative AI outcomes and breaches. Prevent financial and reputational loss
- Avoid Models not performing as intended
- Compliance to AI regulations
- Manage security and privacy failures

- 1.Lifecycle management of Al models
- 2.MLOPS challenge: sensing and interpret a poorly working Al system. Designing alerts for problems
- 3. continuously learning AI models and monitor learning

Other ML topics

- Hardware accelerators:
- Neuromorphic computing
- Reinforcement learning
- Self supervised learning
- Physics informed neural nets

AI Tools


Writing assistants

Meeting assistants

Learning & Research tools

Note taking tool

Marketing

Customer support

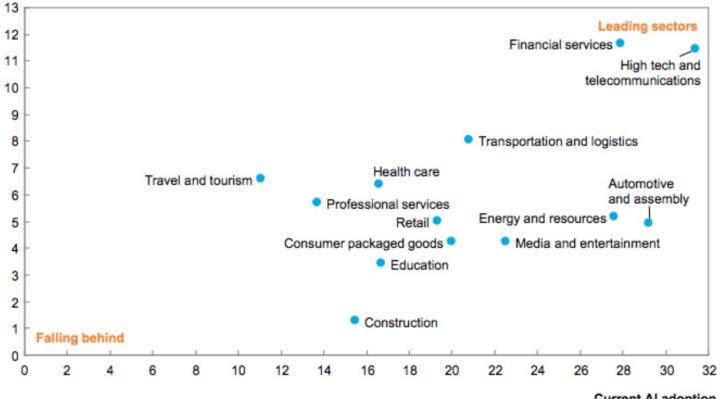
Schedule and plan

Presentation

Translation:
Text-to-speech
Text-to-music
Text-to-image

A comprehensive collection of AI tools: https://www.futuretools.io/

AI/ML Applications in different industries


AI in different sectors

- All economic sectors adopt Al
- Driving value by
 - Decreasing expenses
 - Innovation: Help Launch new products or services
 - Improved decision making
 - Improved productivity
 - Enhancing Reliability security

Sectors leading in Al adoption today also intend to grow their investment the most

Future AI demand trajectory¹

Average estimated % change in AI spending, next 3 years, weighted by firm size2

Current Al adoption

% of firms adopting one or more AI technology at scale or in a core part of their business, weighted by firm size²

SOURCE: McKinsey Global Institute Al adoption and use survey, McKinsey Global Institute analysis

SECTOR	AI/ML APPLICATION
Telecom	 How to detect churn? How to manage the network infrastructure effectively and proactively find problems? How to segment customers based on value? How to predict customer lifetime value? Dynamic pricing, promotion How to optimize call center operations?
Financial services	 Risk modelling Fraud detection Algorithmic trading Robo-advisors
Retail	 Inventory and merchandising management Personalization

-	•	
	SECTOR	AI/ML APPLICATION
	Manufacturing	 Predictive maintenance Robotic process automaton Industrial IOT applications
	Agriculture	Precision farming Crop monitoring Soil analysis and monitoring Dynamic pricing
	Energy	Demand prediction and optimize energy grids Decisions for where to drill for oil from seismic data

SECTOR

AI/ML APPLICATION

Travel tech & Transportation

- Travel assistant
- UX personalization
- Flight fare/hotel pricing
- Matching riders to drivers
- Travel route optimization
- Dynamic pricing

Health care

- Disease diagnosis from medical reports and images
- Drug discovery
- Gene analysis and editing

Education

- Customized learning journeys
- Personalization
- Content creation

SECTOR

AI/ML APPLICATION

Construction/Real estate

- Building information modelling
- Predict housing prices

Consumer Tech

- Recommendation for cross selling
- Customer purchase funnel optimization

Media and entertainment

- Content generation and personalized content
- AR/VR games

Indian AI startups across domains

AI PLATFORM OPSLYFT

DRONES

HEALTH AND WELFARE

SMART MANUFACTURING

SMART CITY

AGRICULTURE

FINTECH

EDUTECH

REAL ESTATE

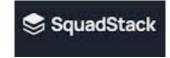
LAW/PATENT

TRAVEL

RETAIL/ E-COMMERCE

SECURITY

FOOD/RESTATURANT


MEDIA/ENTERTAINMENT

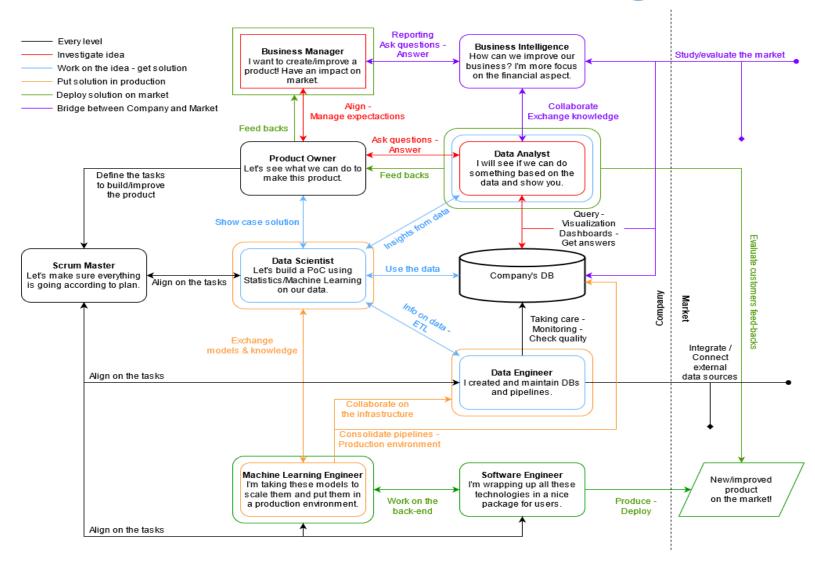
DEVICES/IOT

CANTACT CENTER

MARKETING/SALES

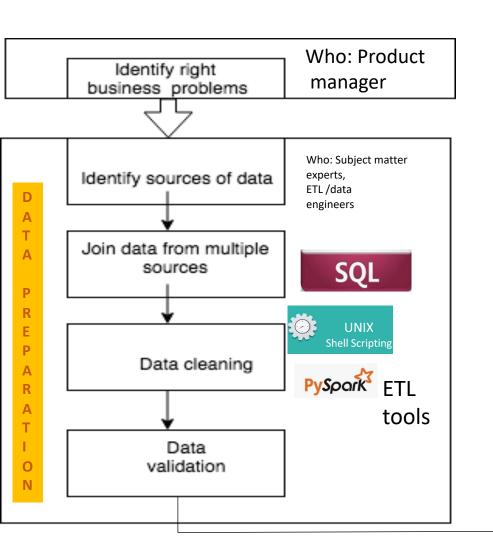
TELECOM

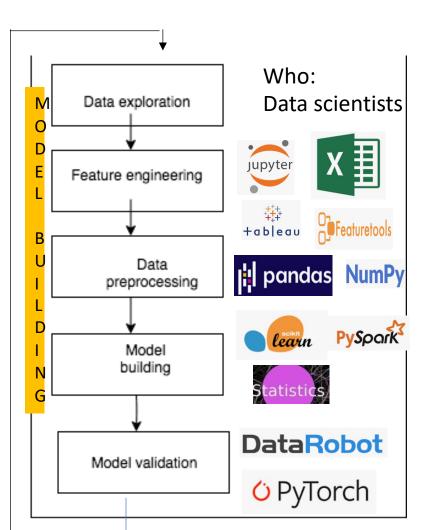
GAMING

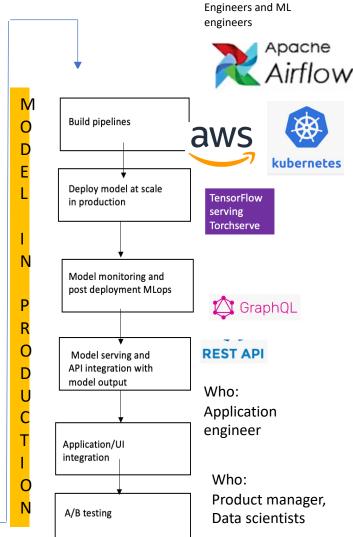


Data driven companies and Data careers and roles

Different roles in creating a data product

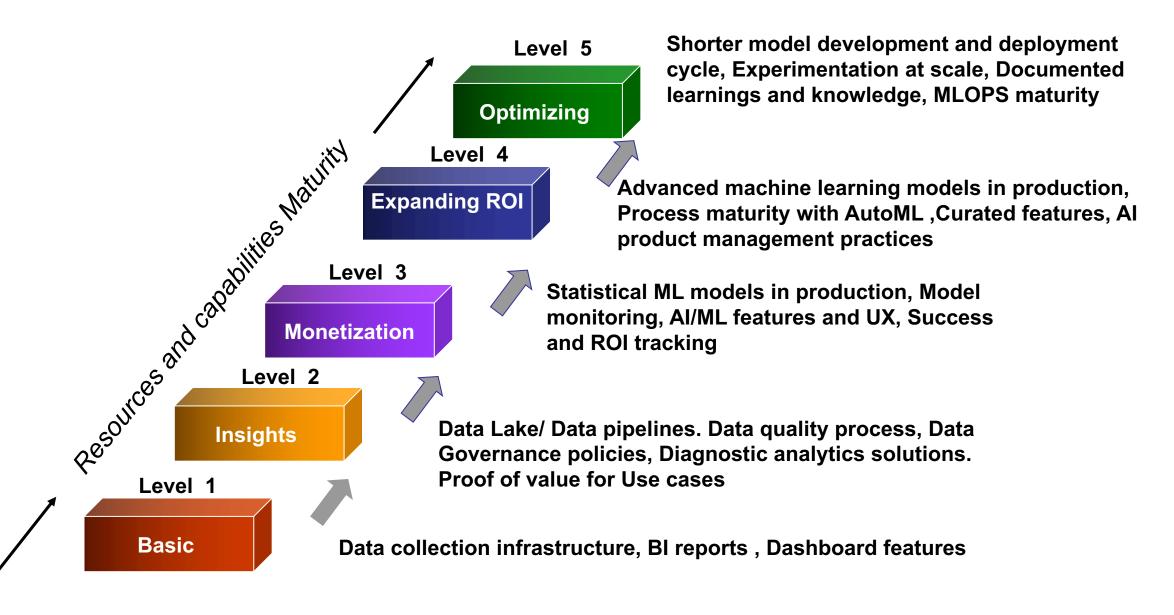


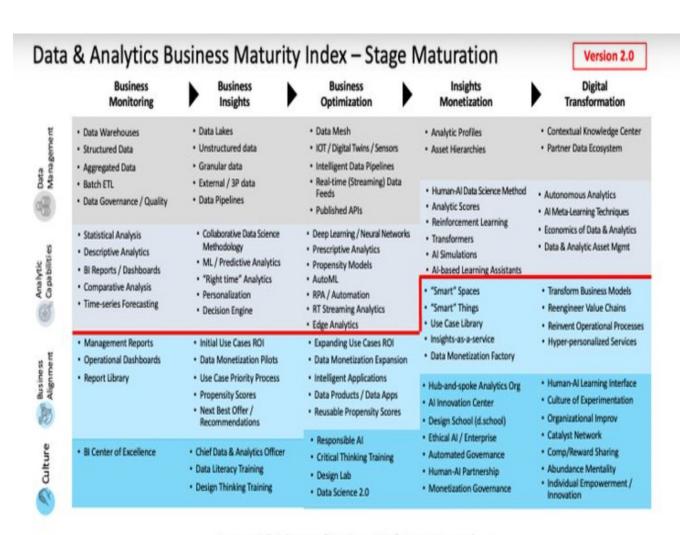

ROLES:


- Business manager
- Business Intelligence
- Product owner
- Scrum master
- Data scientist
- Data analyst
- Data engineer
- ML engineer
- Software engineer

https://www.kdnuggets.com/2021/12/build-solid-data-team.html

ML model lifecycle

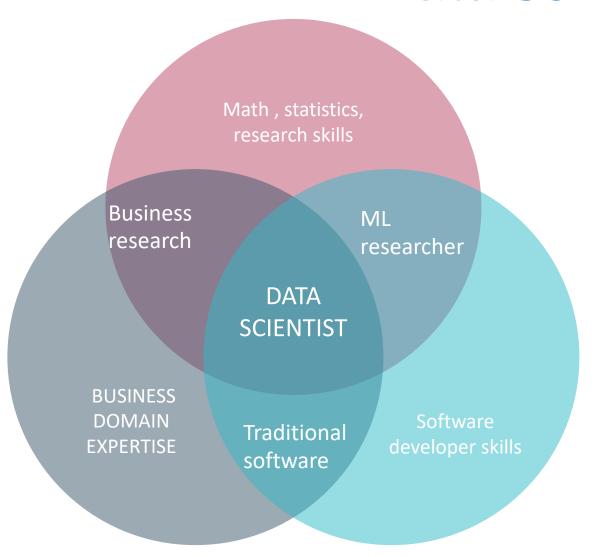




Who: Data

AI/ML org maturity levels

Data and analytics maturity index


Source: Bill Schmarzo "Big Data MBA" Course Curriculum

Questions that assess maturity:

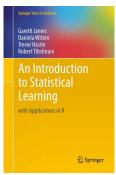
- 1.how much data is generated and stored everyday?
- 2. Where do data reside? What kind of data platform? How many pipelines run everyday?
- 3. what is the model deployment platform? Do you use in-house infra/cloud?
- 4.is there a feature store for curated features
- 5.how is data quality assessed within the org?
- 6. how is the data governance policies? how is access controlled to these data
- 7.what tools you use to discover data?
- 8.are there tools to find out lineage of a data source or table?
- 9. what are the tools for model development? what experiment tracking tools do data scientists use?
- 10.what processes are there to assess model bias?
- 11.how many A/B test/experiments are done an year?
- 12.what kind of post model MLops is done? how do you identify drift?
- 13.do you track the cost of model deployed? how are models retired?
- 14.how many real time models are deployed per year?
- 15. what is the ratio for data analysts: data scientists: data engineers: ML engineers?
- 16.how are the results of data analysis documented and propagated?
- 17.what is the process and reviews do models go through before deployment?
- 18.how are the model outputs integrated with UX?
- 19.how many deep learning models run in production? what are the use cases?
- 20. Do you use any AutoML tools for feature engineering and modelling?

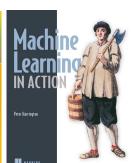
Data scientist role

Data scientist role

THREE MAIN EXPERTISE FOR DATA SCIENTIST

- 1. Software developer skills:
- 2. Business domain expertise:
- 3. Math, statistics and research skills


LinkedIn titles with data science role:


- Experimental scientist
- Decision scientist
- NLP engineer
- Computer vision engineer
- Al researcher ..etc.

Data science Knowledge areas

ML Essentials for beginners:

- Linear regression
- Logistic regression
- KNN, LDA
- Ridge and Lasso regression
- Feature selection
- Cross validation and bootstrap
- Bias variance tradeoff
- Decision trees
- Bagging , Random Forest
- Boosting
- SVMs
- PCA
- K-means clustering and Hierarchical clustering

LEVEL3	Causal inference and causal ML	Tuning deep Simulation learning and of architecturesR LSTM, CNN		her Opera NN, resea		rcement LLM rning	Bayesian approaches	Experiment design
LEVEL2	Anomaly detection		mputer ision	recommender systems	Ranking models	Time series models	NLP	
LEVEL1	ML model deployment Model explainers	Model valid - Bias varia tradeof - Learning o Cross valid	ance Hy if para curve tu	yper ameter ning	A/B testing	Feature selection methods	Feature engineering - data transformation - outlier detection - binning	
LEVELO		so	JL	Crintive	atistical pothesis test	Data visualisation	Basic ML algorithms from scratch	i

Data scientist resume

Resume header

SKILLS

Project portfolio

Public profiles

FIRST LAST

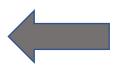
Bay Area, California · +1-234-456-789 · professionalemail@resumeworded.com · linkedin.com/in/username

Skills

- Python, Pandas, scikit-learn
- Apache-spark
- R
- SQL
- Tableau

Projects

Movie Recommendation System

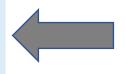

- Used k-nearest-neighbors to build a recommendation model for movies
- The model outperformed achieving 18% improvement over baseline

Attrition model

 Built a employee attrition model using random forest and achieved results with estimated savings of 10 million\$

Sales forecast model

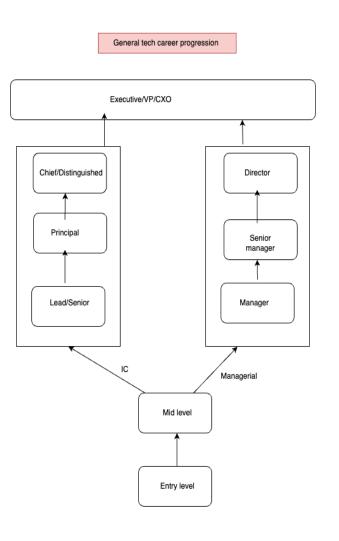
 Implemented a time series model to forecast the sales and improved forecast accuracy by 40%

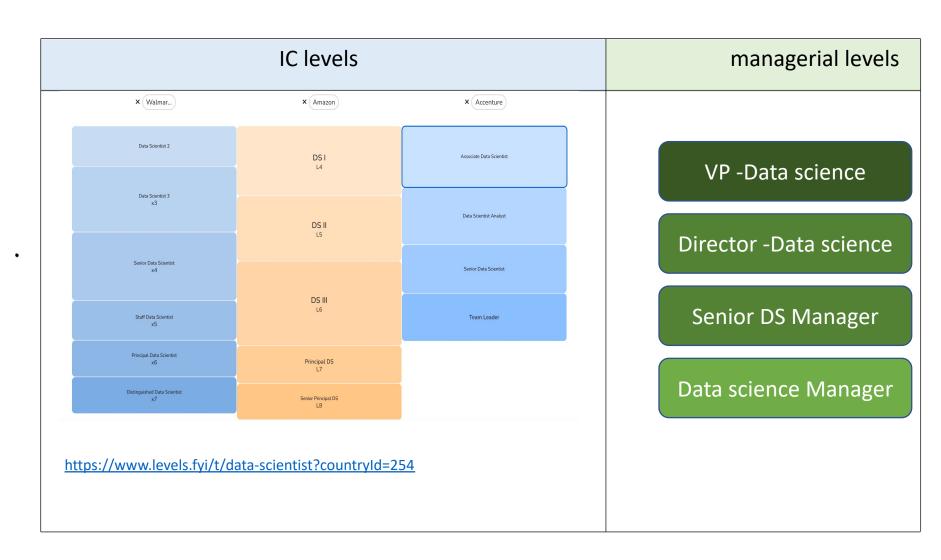


Align skills to job description

Project portfolio expected to have a regression, classification, recommendation problems along with a data analysis project

Resume bullet point template


Github: https://github.com/xxyhz
Linkedin: https://linkedin.com/in/xxyhz


Blog: https://medium.com/@xxyhz

- GitHub home page
- Technical blog
- Personal website etc

Data scientist - Career progression

Thanks

All the best

LinkedIn connect

https://www.lin kedin.com/in/sri mugunthandhandapani/